中培IT学院

甲方大数据、云计算与信息化培训方案

浏览:74次 作者:小编

培训背景

在这个“数据为王”的新纪元,大数据正引领一场颠覆性的革命浪潮,重塑着无数企业的未来命运。本课程旨在通过深入剖析大数据与云计算的专业架构体系,结合业界经典实战案例,全方位提升相关人员的管理素养,助力企事业单位的信息化项目从规划到落地,全方位增强竞争优势。

我们的授课团队由一批深耕大数据和云计算领域多年的资深讲师组成,他们将以理论为基础,技术为支撑,实战案例为辅助,开展互动式教学。课程将重点强化大数据和云计算项目管理方案的构建,促进技术研讨与交流咨询,旨在打造一个学习与交流并重的平台,帮助学员掌握扎实的大数据和云计算理论知识体系,提升项目实施过程中的管控能力。

在教学过程中,我们将根据学员的实际需求,增设交流互动环节。学员可以将工作中遇到的具体问题带来课堂,进行深入讨论。我们的讲师将根据每位学员的实际情况,灵活调整授课内容,引导全体学员积极参与讨论,并提供机会让学员上台发言,现场分析问题,共同规划出切实可行的解决方案。这样的教学方式,不仅促进了知识的吸收,更锻炼了学员的实际操作能力,确保每位学员都能在课程中收获满满。

 

培训收益

1. 深入剖析“互联网+”时代背景下,大数据与云计算的诞生渊源、发展轨迹及其未来演变趋势,以全面把握行业脉动。

2. 精确捕捉业界市场需求,紧跟国内外大数据技术的最新动态,深刻洞察大数据的潜在价值,助力企业发掘无限商机。

3. 系统理解大数据项目的解决方案,分析业界应用案例,为大数据项目的选型与设计提供权威的决策支持。

4. 全面掌握业界领先的Hadoop与Spark大数据技术体系,洞察其核心优势和应用前景。

5. 系统传授云计算基础知识与虚拟化技术,涵盖计算虚拟化、网络虚拟化、存储虚拟化等关键领域,并详细解析VMware、OpenStack、Docker等云管理平台的解决方案,助力学员掌握云端架构的关键技能。

6.通过分析业界成功的云计算案例,包括大型互联网公司及政府智慧城市云平台的管理应用,让学员深入了解云计算在实际场景中的应用策略与效果。

 

培训特色

本次培训从案例分析与行业应用穿插;专家精彩内容解析、学员专题讨论、分组研究;通过全面知识理解、专题技能演示和实践引导学员掌握课程内容。

 

日程安排

          日程

                章节

                                                授课内容

第一天
上午

大数据基础

1.什么是大数据
2.大数据技术的产生背景
3.大数据应用场景
4.大数据思维
5.大数据产业链
6.大数据是如何变革各行业的技术架构、商业模式和组织方式
7.大数据必备的技术基础

业界主流的Hadoop大数据平
台技术产品与项目解决方案

8.国内外主流的大数据解决方案介绍
9.当前大数据解决方案与传统数据库方案的剖析比较
10.Apache Hadoop大数据平台全流程解决方案
11.Cloudera Hadoop大数据平台全流程解决方案
12.HDP Hadoop大数据平台解决方案
13.开源的大数据生态系统平台剖析

大数据平台解决方案

14.Hadoop的发展历程以及产业界实际应用介绍
15.Hadoop大数据平台架构
16.基于Hadoop平台的PB级大数据存储管理与分析处理的工作原理与机制
17.Hadoop的核心组件剖析
18.Hadoop大数据解决方案和产品

第一天
下午

大数据管理系统应用实战
与解决方案

19.大数据管理系统介绍
20.NoSQL数据库与NewSQL数据库技术介绍,及Hadoop数据库典型代表
21.HBase在半结构化和非结构化大数据管理方面的应用实践
22.NOSQL大数据管理解决方案
23.NOSQL管理图数据方案
24.NOSQL 管理非结构化数据方案
25.分布式数据库管理结构化数据方案

大数据监控管理解决方案

26.大数据运维监控管理系统:HUE平台的监控管理解决方案
27.大数据运维管理监控系统Ambari平台
28.Hadoop集群运维Ganglia, Nagios解决方案

大型数据仓库与
数据中心解决方案

29.基于Hadoop的大型分布式数据仓库基础知识,HIVE在行业中的数据仓库应用案例
30.政务大数据仓库的建设
31.持续增长的数据仓库的建设实施案例

第二天
上午

实时大数据分析处理
平台的解决方案

32.Spark的发展历程以及业界的实际应用介绍
33.Spark实时大数据处理平台架构
34.Spark RDD内存弹性分布式数据集的工作原理与机制
35.Spark的核心组件剖析
36.基于Spark的实时数据仓库与实时分析挖掘处理在行业中的应用实践案例

政府部门大数据应用案例

37.医疗大数据应用
38.数字城市大数据应用
39.国土大数据应用
40.电力大数据应用
41.城市管理大数据应用

大数据中心常见
问题及应对之策

42.大数据中心的数据治理问题及应对之策
43.大数据中心的安全问题及应对之策
44.大数据中心的更新升级问题及应对之策
45.大数据中心的访问控制问题及应对之策
46.大数据中心的能源供应问题及应对之策
47.大数据中心的双活备用问题及应对之策

云计算基础

48.云计算技术应用解决方案,智慧城市与云计算技术应用,移动互联网、大数据与云计算应用解决方案
49.云计算和大数据技术在运营商、金融业、银行业、电子商务行业、零售业、制造业、政务信息化、互联网、教育信息化等行业应用实践
50.云计算平台技术与层次架构分析
51.云计算的服务模式与SPI服务模型,IaaS、PaaS、SaaS、DaaS技术解析
52.公有云计算平台、私有云平台、混合云平台
53.政务云平台的实施案例

云计算关键技术

54.云计算和虚拟化平台的成熟应用案例
55.云计算与虚拟化平台的关键技术
56.云计算平台的架构设计与实现
57.云资源池管理解决方案剖析
58.云计算分布式计算技术以及存储虚拟化、计算虚拟化、网络虚拟化技术原理
59.桌面虚拟化、服务器虚拟化技术原理及应用

第二天
下午

云计算解决方案

60.云计算与虚拟化技术的应用解决方案
61.重点讲解业界主流的标准化云计算平台产品的平台架构及其应用概况
62.OpenStack云计算虚拟化管理平台解决方案
63.VMware VSphere云计算虚拟化集群管理平台解决方案
64.容器虚拟化云平台解决方案,包括Docker云平台方案与产品

云平台运维管理

65.商业云计算平台VMware的运维管理
66.开源云计算平台OpenStack的运维管理
67.容器云平台Docker和Kubernetes运维管理
68.云平台的自动化运维的挑战与解决之道
69.云平台的运维特征分析与特点
70.云平台的安全运维之道
71.云平台运维系统的规划设计和系统架构
72.云运维管理角色的职责设计
73.云平台的平台优化运维
74.云平台的系统监控层维护

信息化项目建设管理系统
流程及相关的系统知识

75.信息化项目的管理流程
76.信息化项目管理需要具备的系统知识
77.主机规划知识、ICT系统知识
78.交流讨论:根据讲师布置的实际应用案例,开展大数据完整项目部署设计和应用开发实践、大数据项目的需求分析、应用实施以及解决方案

第三天
上午

大数据基础技术

79.大数据的4V特征,以及与云计算的关系
80.大数据应用需求以及潜在价值分析
81.业界最新的大数据技术发展态势与应用趋势
82.大数据项目的系统与技术选型,及落地实施的挑战
83.“互联网+”时代下的电子商务、制造业、零售批发、电信运营商、互联网金融业、电子政务、移动互联网、教育信息化等行业应用实践与应用案例介绍

业界主流的大数据
技术方案

84.大数据软硬件系统全栈与关键技术介绍
85.主流的大数据解决方案介绍
86.Apache大数据平台方案剖析
87.CDH大数据平台方案剖析
88.HDP大数据平台方案剖析
89.大数据解决方案与传统数据库方案比较

大数据计算模型(一)
批处理MapReduce

90.MapReduce产生背景与适用场景
91.MapReduce计算模型的基本原理
92.MapReduce作业执行流程
93.MapReduce基本组件,Jobtracker和Tasktracker
94.MapReduce高级编程应用,Combiner和Partitioner
95.MapReduce性能优化技巧
96.MapReduce案例分析与开发实践操作

第三天
下午

大数据存储系统与
应用实践

97.分布式文件系统HDFS产生背景与适用场景
98.HDFS master-slave系统架构与工作原理
99.HDFS核心组件技术讲解
100.HDFS高可用保证机制
101.HDFS集群的安装、部署与配置,熟练HDFS shell命令操作
102.分布式小文件存储系统的平台架构、核心技术与应用场景
103.分布式对象存储系统的平台架构、核心技术与应用场景

Hadoop框架与生态发展
以及应用实践操作

104.Hadoop的发展历程
105.Hadoop大数据生态圈系统与工具全貌介绍
106.Hadoop 1.0的核心组件与适用范围
107.Hadoop 2.0的核心组件YARN工作原理,以及与Hadoop 1.0的区别
108.Hadoop资源管理与作业调度机制
109.Hadoop 常用性能优化技术
110.Hadoop集群安装与部署实践,以及MapReduce程序在YARN上执行

第四天
上午

大数据计算模型(二)
实时处理/内存计算 Spark

111.MapReduce计算模型的瓶颈
112.Spark产生动机、基本概念与适用场景
113.Spark编程模型与RDD弹性分布式数据集的工作原理与机制
114.Spark实时处理平台运行架构与核心组件
115.Spark容错机制
116.Spark作业调度机制
117.Scala开发介绍与实践
118.Spark集群部署与配置实践,Spark开发环境构建,Spark案例程序分析,Spark程序开发与运行,Spark与Hadoop集群集成实践

总结

学员分组交流讨论


企业内训1 企业内训1
标签: 大数据 云计算 大数据课程 大数据培训 云计算课程 云计算培训 信息化培训 信息化课程 信息化

上篇: 金融风险建模和数据分析培训方案

下篇: 大数据资源、云计算运维、信息化项目管理培....