日程 | 章节 | 授课内容 |
第一天 | 大数据基础 | 1. 什么是大数据 2 大数据技术的产生背景 3. 大数据应用场景 4. 大数据思维 5. 大数据产业链 6. 大数据是如何变革各行业的技术架构、商业模式和组织方式 7. 大数据必备的技术基础 |
业界主流Hadoop 大数据平台技术产品 与项目解决方案 | 8. 国内外主流的大数据解决方案介绍 9. 当前大数据解决方案与传统数据库方案的剖析比较 10. Apache Hadoop大数据平台全流程解决方案 11. Cloudera Hadoop大数据平台全流程解决方案 12. HDP Hadoop大数据平台解决方案 13. 开源的大数据生态系统平台剖析 |
大数据平台解决方案 | 14. Hadoop的发展历程以及产业界实际应用介绍 15. Hadoop 大数据平台架构 16. 基于Hadoop平台的PB级大数据存储管理与分析处理的工作原理与机制 17. Hadoop的核心组件剖析 18. Hadoop大数据解决方案和产品 |
大数据管理系统 应用实战与解决方案 | 19. 大数据管理系统介绍 20. NoSQL 数据库与 NewSQL 数据库技术介绍,及Hadoop 数据库典型代表 21. HBase 在半结构化和非结构化大数据管理方面的应用实践 22. NOSQL 大数需管理解决方案 23. NOSQL 管理图数据方案 24. NOSQL 管理非结构化数据方案 25. 分布式数据库管理结构化数据方案 |
大数据监控 管理解决方案 | 26.大数据运维监控管理系统:HUE平台的监控管理解决方案 27.大数据运维管理监控系统Ambari平台 28.Hadoop集群运维Ganglia,Nagios解决方案 |
大型数据仓库与 数据中心解决方案 | 29.基于Hadoop的大型分布式数据仓库基础 30.政务大数据仓库的建设 31.持续增长的数据仓库的建设实施案例 |
第二天 | 实时大数据 分析处理平台 的解决方案 | 32. Spark 的发展历程以及业界的实际应用介绍 33. Spark实时大数据处理平台架构 34. Spark RDD内存弹性分布式数据集的工作 35. Spark的核心组件剖析 36. 基于Spark的实时数据仓库与实时分析挖掘处理在行业中的应用实践案例 |
政府部门大数据 应用案例 | 37. 医疗大数据应用 38. 数字城市大数据应用 39. 国土大数据应用 40. 电力大数据应用 41. 城市管理大数据应用 |
大数据中心常见 问题及应对之策 | 42. 大数据中心的数据治理问题及应对之策 43. 大数据中心的安全问题及应对之策 45. 大数据中心的访问控制问题及应对之策 46. 大数据中心的能源供应问题及应对之策 47. 大数据中心的双活备用问题及应对之策 |
云计算基础 | 48. 云计算技术应用解决方案,智慧城市与云计算技术应用,移动互联网、大数据与云计算应用解决方案 49. 云计算和大数据技术在运营商、金融业、银行业、电子商务行业、零售业、制造业、政务信息化、互联网、教育信息化等行业应用实践 50. 云计算平台技术与层次架构分析 51. 云计算的服务模式与SPI服务模型,laas、PaaS、SaaS、DaaS技术解析 52. 公有云计算平台、私有云平台、混合云平台 53. 政务云平台的实施室例 |
云计算关键技术 | 54. 云计算和虚拟化平台的成熟应用案例 55. 云计算与虚拟化平台的关键技术 56. 云计算平台的架构设计与实现 57. 云资源池管理解决方富剖析 58. 云计算分布式计算技术以及存储虚拟化、计算虚拟化、网络虚拟化技术原理 59. 桌面虚拟化、服务器虚拟化技术原理及应用 |
云计算解决方案 | 60. 云计算与虚拟化技术的应用解决方案 61. 重点讲解业界主流的标准化云计算平台产品的平台架构及其应用概况 62. OpenStack 云计算点拟化管理平台解决方 63. VMware VSphere 云计算虚拟化集群管理平台解决方案 64. 容器虚拟化云平台解决方案,包括 Docker云平台方案与产品 |
云平台运维管理 | 65. 商业云计算平台VMware 的运维管理 66. 开源云计算平台 OpenStack 的运维管理 67. 容器云平台Docker和 Kubermnetes 运维管理 68. 云平台的自动化运维的挑战与解决之道 69. 云平台的运维特征分析与特点 70. 云平台的安全运维之道 71. 云平台运维系统的规划设计和系统架构 72. 云运维管理角色的职责设计 73. 云平台的平台优化运维 74. 云平台的系统监控层维护 |
信息化项目建设 管理系统流程及 相关的系统知识 | 75. 信息化项目的管理流程 76. 信息化项目管理需要具备的系统知识 77. 主机规划知识,ICT系统知识 78. 交流讨论:根据讲师布置的实际应用案例,开展大数据完整项目部容设计和应用开发实践、大数据项目的需求分析、应用实施以及解决方案 |
第三天 | 大数据基础技术 | 79. 大数据的4V特征,以及与云计算的关系 80. 大数据应用需求以及潜在价值分析 81. 业界最新的大数据技术发展态势与应用趋势 82. 大数招项目的系统与技术选型,及落地实施的挑战 83. “互联网+时代下的电子商务、制造业、零售批发、电信运营岗,互联网金融业、电子政务、移动互联网、教育信息化等行业应用实残与应用露例介绍 |
业界主流的 大数据技术方案 | 84. 大数据欤硬件系统全栈与关键技术介绍 85. 主流的大数据解决方露介绍 86. Apache 大数据平台方索创析 87. CDH大数据平台方宏创析 88. HDP大数据平台方索制析 89. 大数贴解决方室与传统致眍库方家比较 |
大数据计算模型 (一) 批处理 MapReduce | 90. MapReduce产生背景与适用场景 91. MapReduce 计算模型的基本原理 92. MapReduce作业执行流程 93. MapReduce基本姐件,Jobtracker和Tasktracker 94. MapReduce高级编程应用,Combiner和Partitioner 95. MapReduce性能优化技巧 96. MapReduce室例分析与开发实践操作 |
大数据存储系统 与应用实践 | 97.分布式文件系统HDFS 产生背景与适用场景 98. HDFS master-slave 系统架构与工作原理 99. HDFS核心组件技术讲解 100. HDFS 高可用保证机制 101. HDFS 集群的安装,部零与配置,熟练HDFS shell 命令操作 102. 分布式小文件存储系统的平台深构、核心技术与应用场景 103. 分布式对象存储系统的平台架构、核心技术与应用场景 |
Hadoop框架与 生态发展及 应用实践操作 | 104. Hadoop的发展历程 105. Hadoop 大数据生态国系统与工具全貌介绍 106. Hadoop 1. 0的核心组件与适用范围 107. Hadoop 2. 0的核心组件YARN 工作原理,以及与Hadoop 1. 0的区别 108. Hadoop资源管理与作业调度机制 109. Hadoop 常用性能优化技术 110. Hadoop集群安装与部署实践,以及MapReduce程序在YARN上执行 |
第四天 | 大数据计算模型 (二) 实时处理/内存计算Spark | 111. MapReduce计算模型的瓶颈 112. Spark产生动机、基本概念与适用场景 113. Spark 编程模型与 RDD弹性分布式数据集的工作原理与机制 114. Spark 实时处理平台运行架构与核心组件 115. Spark容错机制 116. Spark作业调度机制 117. Scala开发介绍与实践 118. Spark 集群部署与配置实践,Spark开发环境构建,Spark案例程序分析,Spark程序开发与运行,Spark与Hadoop集群集成实践 |
总结 | 学员分组交流讨论 |